The sheer volume of information produced every day makes it difficult to distinguish between real and fake news, but advances in natural language processing (NLP) present a possible solution.
In today’s digital era, the spread of information via social media and internet platforms has given people the power to access news from many different sources. The growth of fake news, meanwhile, is a drawback of this independence. Fake news is inaccurate information that has been purposefully spread to confuse the public and undermine confidence in reputable journalism. Maintaining an informed and united global community requires identifying and eliminating fake news.
NLP, a subfield of artificial intelligence, gives computers the capacity to comprehend and interpret human language, making it a crucial tool for identifying deceptive information. This article examines how NLP can be used to identify fake news and gives examples of how it can be used to unearth misleading data.
To identify bogus news, sentiment analysis using NLP can be an effective strategy. NLP algorithms can ascertain the intention and any biases of an author by analyzing the emotions displayed in a news story or social media post. Fake news frequently preys on readers’ emotions by using strong language or exaggeration.
Extracting opinion phrases from user reviews with Stanford CoreNLP http://t.co/t6VIzfNRfz #machinelearning #nlp pic.twitter.com/RHiTl40Q7c
A news item covering a political incident, for instance, can be identified by an NLP-based sentiment analysis model as being significantly biased in favor of a specific party and using emotionally charged language to affect public opinion.
Related: 5 natural language processing (NLP) libraries to use
To confirm
Read more on cointelegraph.com